Abstract
Urban green spaces are closely related to the abundance and biodiversity of birds by providing important habitats and together contribute to ecosystem health. This project aims to guide the University of British Columbia Botanical Garden to create Bird-friendly green spaces by using LiDAR data to analyze and map UBCBG’s bird habitat suitability and create a 3D digital twin model of UBCBG in the open source game engine Minetest to increase 3D visualization and aid in landscape planning. By extracting the Canopy Height Model (CHM) using LiDAR data and performing individual tree segmentation, the derived metrics were used to identify trees with the highest bird habitat suitability index. The results showed that the suitability index ranges from -0.0016 to 0.5187, with a mean value of 0.2051. There are 68 trees with high suitability above the 0.4 intervals which have significance to bird populations and are worthy of being protected, accounting for only 3.38% of the total trees. They usually have a low vertical complexity index and foliage height diversity but are characterized by very tall trees with relatively large tree crowns. The Digital Elevation Model (DEM), Canopy Height Model (CHM) generated by LiDAR data were visualized in Minetest’s UBCBG’s 3D digital twin model using real terrain mod as topography and vegetation layers, while bird habitat suitability was used to symbolize the tree canopy layer. This study is highly relevant for landscape adaptation and planning in conjunction with other management considerations to support bird-friendly green spaces. The digital twin model can be used for educational and promotional purposes, and for landscape planning and aesthetic design with the consideration of bird conservation.
MGEM Student: Yaxuan Cheng
Community Partner: Dr. Paul Pickell (UBC Faculty of Forestry)
Explore this project
Download the final report and data
Cite this project
Cheng, Yaxuan, 2023, “Using LiDAR Data to Analyze the Habitat Suitability for Birds and Create the Minetest Digital Twin Model of UBC Botanical Garden”,